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ABSTRACT 

Whole-stand Models (WSM) have always been fitted with permanent plot data organised in 
a sequential age-matched database, i.e., i and i+1, where i = 1, 2, ... N plot measurements. 
The objectives of this study were (1) to evaluate the statistical efficiency of a monthly 
distributed data structure by fitting the models of Clutter (1963), Buckman (1962) in the 
version modified by A. L. da Silva et al. (2006), and deep learning, and (2) to evaluate 
the possibility of gaining accuracy in yield projections made from an early age to harvest 
age of eucalypt stands. Three alternatives for organizing the data were analyzed. The 
first is with data paired in sequential measurement ages, i.e., i and i+1, where i = 1, 2, 

... N plot measurements. In the second, all 
possible measurement intervals for each 
plot were considered, i.e., i, i+1; i, i+2; 
...; i, N; i+1, i+2; ..., N-1, N. The third has 
data paired by month (j), always with an 
interval of one month, i.e., j, j+1; j+1, j+2; 
j+M-1, M, where M is the stand age of the 
plot measurement in months. This study 
shows that the accuracy and consistency of 
the projections depend on the organization 
of the monthly distributed data, except for 
the Clutter model. A better alternative to 
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increasing the statistical assumptions of the 
forecast from early to harvest age is based 
on a monthly distributed data structure using 
a deep learning method. 

Keywords: Buckman, clutter, deep learning, forest 

management, volumetric projection

INTRODUCTION

The growth and yield modeling of even-aged 
stands is essential to forest management 
(Campos & Leite, 2017; Davis & Johnson, 
1987). The models estimate harvest stocks 
for different prescriptions and thus support 
management plans, especially in hierarchical 
planning. Models are also important to figure 
out the average productivity at different 
sites used as inputs in studies related to the 
sustainability of production.

Growth and yield models can be used 
for prediction or projection. In the first case, 
growth and future yield are independent of 
current yield. In the second, the model’s 
functional relationships use the current yield 
(in basal area and/or volume) as a predictor 
variable (i.e., an independent variable). A 
prediction model can be transformed and 
applied to differentiate future production 
according to current production, however, 
with the same growth trend (Campos & 
Leite, 2017). Estimating wood stocks for 
defined ages in a strategic planning model 
is known as prognosis; this term refers to 
any procedure that generates an expectation 
of future production. According to Burkhart 
and Tomé (2012) and Castro et al. (2013), 
the prediction describes the change in the 
size of the individual population over time. 

One of the components or elements in 
forest management is prognosis, which is 
usually done using growth and yield models. 
Despite significant advances in studies 
of growth and yield modeling of forest 
stands with regression, problems persist. 
One of these problems is the low accuracy 
of projections made from early ages, for 
example, from two or three years of age to 
harvest age, which in Brazil is generally six 
or seven years for eucalypt stands to produce 
cellulose pulp or charcoal. This difficulty is 
related to the heteroscedastic nature of the 
relations between dominant height (Hd) 
and volume (V) with age (A), with less 
variance at early ages. In most cases, the 
dispersion of Hd and V at ages 1.5 to 2.5 
years, in eucalypt stands, is relatively small. 
As the years go by, the variance of Hd and V 
increases, indicating that heteroscedasticity 
occurs naturally. 

The main models used in Brazil are 
Whole-stand Models (WSM) for the use of 
wood, most often to produce cellulose pulp 
or charcoal. These aspects are discussed by 
Campos and Leite (2017) with reference to 
exponential and sigmoid models, in addition 
to the Buckman (1962) and Clutter (1963) 
models. In their discussions, they report 
that using simpler functional relationships 
requires more intense data stratification for 
modeling. 

Buckman model (1962) had not been 
used on a commercial scale in Brazil despite 
several researchers intending to demonstrate 
its feasibility in its use (A. L. da Silva et al., 
2006; Burkhart & Sprinz, 1984; Guera et 
al., 2019; Trevizol Jr., 1985). On the other 
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hand, the Clutter model has always been 
used in different regions of Brazil since 
the 1985s (Miguel et al. 2016; Penido et al. 
2020; Salles et al., 2012; Soares et al., 2004; 
Trevizol Jr., 1985).

Authors have shown that for ranking 
productive capacity (site index) using 
mathematical regression models, the 
evaluation of estimates and statistical 
parameters depends on both the model and 
the data structure used for modeling (Cao, 
1993; Cieszewski, 2002; Hirigoyen et al., 
2018; Strub & Cieszewski, 2006). 

Another example influenced by the 
organization of data is also carried out when 
modeling with metaheuristic techniques 
such as Artificial Neural Networks (ANNs) 
for WSM, such is the case of irregular 
intervals (da Silva Binoti et al., 2015), 
i.e., i and i+1, where i = 1, 2, ... N plot 
measurements, for the prediction of the 
performance of different initial ages and 
intervals of prediction are necessary for 
hierarchical planning. Nonetheless, works 
related to the Buckman (1962) and Clutter 
(1963) models were not found. 

ANNs have been increasingly used 
for various purposes in forest engineering 
(Araújo Júnior et al., 2019; de Freitas et 
al., 2020; Gavilán-Acuña et al., 2021; 
Lopes et al., 2020; S. Silva et al., 2020). 
In general, the accuracy of yield estimates 
at the stand level has been higher when 
ANN is employed compared to growth and 
yield models (Casas, Fardin, et al., 2022; 
de Oliveira Neto et al., 2022). The higher 
accuracy is partially explained by including 
categorical variables in the ANN. Despite 
the gain in accuracy with the use of ANN, 

the problem of inefficient projection for 
about 2 years (in the case of eucalypt stands) 
persists. 

Deep learning is part of the broader field 
of machine learning and artificial intelligence 
that uses artificial neural networks. The 
difference with a conventional network is 
that deep networks allow computational 
models of multiple processing layers to learn 
data representations with various levels of 
abstraction (Aggarwal, 2018; LeCun et 
al., 2015). Understanding the irrational 
effectiveness of deep learning is very 
complex and is still being studied through 
advanced mathematics and neuroscience, 
as it is an inspirational source in the brain’s 
architecture (Sejnowski, 2020). Deep 
learning has been increasingly used in 
research involving complex structures in 
different forestry and environmental areas, 
where studies have been reported on the 
hypsometric relationship between tree 
diameter and height (Casas, Gonzáles, et al., 
2022), individual tree detection and species 
classification of Amazonian palms (Ferreira 
et al., 2020), forest damage assessment 
(Hamdi et al., 2019), analysis of drone-
acquired forest images (Kentsch et al., 
2020), automatic identification of charcoal 
origin (de Oliveira Neto et al., 2021), plant 
identification in the natural environment 
(Sun et al., 2017) and wood filtering, and 
tree species classification from terrestrial 
laser scanning (Xi et al., 2020). 

Most studies using machine learning 
for prognosis comparisons are made using 
regression modeling. The following question 
arises: Is there any gain or loss in statistical 
efficiency when fitting the Clutter model, 



Gianmarco Goycochea Casas, Carlos Pedro Boechat Soares, Márcio Leles Romarco de Oliveira, Daniel Henrique Breda Binoti, Leonardo 
Pereira Fardin, Mathaus Messias Coimbra Limeira, Zool Hilmi Ismail, Antonilmar Araújo Lopes da Silva and Hélio Garcia Leite

1130 Pertanika J. Trop. Agri. Sci. 46 (4): 1127 - 1150 (2023)

Buckman model, and deep learning when 
using a monthly distributed data organization 
from continuous inventories with permanent 
plots? The objectives of this study were to 
(1) evaluate the statistical efficiency of a 
monthly distributed data structure by fitting 
the models of Buckman (1962) and Clutter 
(1963) in the version modified by A. L. da 
Silva et al. (2006) and deep learning, and (2) 
evaluate the possibility of gaining accuracy 
in yield projections in eucalypt stands made 
from initial ages of approximately two years 
to the age of harvest with ages of six and 
seven years.

MATERIALS AND METHODS

Study Area Description

The data used in this study were measured 
from 1,243 permanent 400 m2  rectangular 
plots distributed in 243 project stands 

of the hybrid Eucalyptus urophylla x 
Eucalyptus grandis, with a spacing of 3 x 
3 m2, located in the Midwest region of the 
Minas Gerais state, Brazil. Stand locations 
were at a mean altitude of 743 m, a mean 
annual precipitation of 1,163 mm, and a 
mean annual temperature of 27°C (Alvares 
et al., 2013). The database consisted of 
annual dasometric measurements from 
2006 to 2015 for each permanent plot. The 
variables used in this study were dominant 
height (m), basal area (m2/ha), and volume 
(m3/ha). The statistical description of the 
dasometric variables for each region can be 
found in Table 1.

Structuring of Processing Data

Regression and deep learning methods 
were used. In the regression method, two 
WSM models were used: The Buckman 

Table 1
Statistical description of dasometric variables of hybrid eucalypt stands located in the Midwest Region in the 
Minas Gerais state, Brazil

Subregion Variable Valid 
N Mean Minimum Maximum Variance Standard 

deviation
Standard 

error

A

Age 
(months) 3,442 46.78 18.00 95.00 373.70 19.33 0.33

Dominant 
Height 

(m)
3,442 21.59 7.63 39.24 35.23 5.94 0.10

Basal Area 
(m2/ha) 3,442 15.98 0.22 40.31 41.10 6.41 0.11

Volume 
(m3/ha) 3,442 153.84 1.22 558.11 9,243.80 96.14 1.64

B

Age 
(months) 2,576 39.47 20.00 82.00 209.68 14.48 0.29

Dominant 
Height 

(m)
2,576 19.47 7.23 35.87 22.63 4.76 0.09
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model (1962) and the Clutter model (1963), 
modified by A. L. da Silva et al. (2006). 
Three different data structures were fit for 
growth and yield modeling:

I. The two variable density models are 
equipped with the following data structure: 
paired data considering ascending intervals 
without overlap ([A1-A2], [A2-A3], . . . [An-
An+1]). This structure has historically been 
used for fitting variable-density growth and 
yield models and other projection models.

II. ANN techniques are used with 
the following data structure: considering 
An as age at measurement n = 1, 2, 3, …. 
N in a measurement plot, the database 
was organized considering all possible 
age intervals for each plot, i.e. paired data 
considering all possible ascending age 
intervals ([A1-A2], [A1-A3], . . . . [A2-A3], 
[A2-A4], . . . [An-An+1], [An-An+2]). It was 
necessary so that the networks could be 
trained to generalize to different early ages 

and projection intervals and usually be used 
for these cases. 

III. In this study, the following data 
structure was proposed: paired data is 
considered with ascending intervals without 
overlap by month (j), always with an 
interval of one month, i.e., j, j+1; j+1, j+2; 
j+M-1, M, where M is the stand age of 
the plot measurement in months. Linear 
interpolations were made between each 
plot’s values to set up this structure. 

Monthly structured data must be 
converted to Data Structure II to apply the 
deep learning method. In the case of any 
regression method, it is not necessary to 
perform the conversion for Data Structure 
II. By performing this conversion, we obtain 
the Data Structures II-A and II-B (Figure 
1). Training the networks to generalize to 
different early ages and projection intervals 
was necessary. 

Table 1 (Continue)

Subregion Variable Valid 
N Mean Minimum Maximum Variance Standard 

deviation
Standard 

error

Basal Area 
(m2/ha) 2,576 14.41 1.53 34.48 26.53 5.15 0.10

Volume 
(m3/ha) 2,576 138.82 5.03 444.22 6,001.68 77.47 1.53

C

Age 
(months) 1,976 37.10 19.00 73.00 158.39 12.59 0.28

Dominant 
Height 

(m)
1,976 19.87 8.67 33.57 24.56 4.96 0.11

Basal Area 
(m2/ha) 1,976 14.45 3.11 28.91 26.56 5.15 0.12

Volume 
(m3/ha) 1,976 132.17 11.15 397.83 5,953.52 77.16 1.74
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Figure 1. Example of a one-plot database structure used to fit Buckman model (1962) and Clutter model 
(1963) modified by A. L. da Silva et al. (2006) (Data Structures I and III) and deep learning (Data Structures 
II-A and II-B) models and the process of converting data from one structure to another structure according to 
the method to be used

Fitting the Data with the Variable 
Density Models

The growth and yield models for this study 
were the Clutter (Equations 1 and 2) and 
Buckman, modified by A. L. da Silva et 
al. (2006) (Equations 3 and 4). The Clutter 

model was fitted by the two-stage least 
squares method using applied econometrics 
with an R (AER) package (Kleiber & 
Zeileis, 2008) and the Buckman model by 
ordinary least squares in R. The equations 
are shown below:

(Equations 1 and 2 )
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The guide curve method figured out the 
site indexes for each measurement (Clutter 
et al., 1983). In our study to figure out the 
site index, the Gompertz (1825) model has 
been selected since this model is the most 
adequate to estimate the dominant height as 
a function of age for eucalypt stands (Reis 
et al., 2022). The index age (Ai) was 72 
months. This index age is appropriate for 
the eucalypt species in Brazil. 

Thus,  considering the classical 
transformation of the guide curve method, 
in which:

1 2

0

AeHd e
β β

εβ
−−= +  with observe Hd 

at the age A
1 2

0

AieS e
β β

εβ
−−= + at the index age Ai 

of 72 months 

Therefore, the site index equation 
(Equation 5) was established by taking the 
differences between the above equations and 
expressing them explicitly in terms of S:

721 2 1 2
/

Ae eS Hde e
β β β β− −− −=    

(Equation 5)

where Hd  = dominant height (m) 
observed at age A, S = site index (m), and 
β1 and β2 = parameter estimates of the 
Gompertz model.

Fitting the Data with Deep Learning

Input and Output Variables. In the output 
layer, the variable was future volume (V2). 
From this variable in the output layer, we 
set the variables of the input layer using the 
following function (Equation 6): 

V2 = f (Project stand, A1, A2, B1, Hd, V1)
            (Equation 6)

where V2 = future volume (m3/ha) in the 
output layer; A1 = current age (month); A2 = 
future age (month); B1 = current basal area 
(m2/ha); Hd = dominant height (m); and V1 
= current volume (m3/ha) in the input layer. 
The project stand had categorical variables 
in the input layer. 

Hyperparameter Tuning with Grid 
Search for Deep Learning. A Cartesian 
grid search was performed. It has performed 
the procedure for implementing the deep 
learning method and trained models for 
every combination of the hyperparameter 
values. For each function, 162 models were 
trained for the deep learning method. The 
data were processed in R (R Core Team, 
2020) using the H2O package (Fryda et 
al., 2020). Their architectures had one 
input layer, two, three, and four hidden 
layers, and one output layer. The numbers 
of neurons in the hidden layer were 50:25, 
50:25:5, 100:50, 100:50:25, 100:50:25:5, 
and 200:100:50. The functions of activations 
in the hidden layer were Tanh (Equation 7), 
Rectified Linear (Equation 8), and Maxout 
(Equation 9): 

Tanh [ ]( ) ; ( ) 1,1e ef f x
e e

α α

α αα
−

−

 −
= ∈ − +    

              (Equation 7)
Rectified Linear 

   (Equation 8)

Maxout 
 [ ](.) max( ) ; (.) [ ,1]i if w x b f= + ∈ −∞ ; 
rescale if max f(.) ≥1                (Equation 9)
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In the output layer, it has configured 
Linear activation function [ ]( )f α α=  for all 
trained models, where f is the function that 
represents the non-linear activation used in 
the entire neural network; b is the bias for 
the neuron activation threshold; xi and wi 

denote the input values of the unit or neuron 
and their weights; α denotes the weighted 
combination: 

1

n
i ij

w x bα
=

= +∑
Gaussian distribution function was 

configured as an equivalent to weighted 
mean squared error (wMSE) (Equation 10):

( )2(.)f y fω= −                  (Equation 10)

where y is a true response, f is a predicted 
response and  is weighted. 

The loss function chosen was quadratic 
(Equation 11):

 1 2( ) ( )

2 2
( , ) j jL W B j t o= −

   
             (Equation 11)

where ( )jt and ( )jo are the predicted 
output and actual output; j and W are the 
collection {Wi}1:N-1, which iW  denotes 
the weight matrix connecting layers i and 
i + 1 for a network of N layers; B is the 
collection { }1: 1i N

b
− , which ib denotes the 

column vector of biases for layer i + 1.
The mini-batch was of size 1, the 

number of epochs was 1,000, and the type 
of regularization was the early stopping 
system, with 5 stop rounds, a stop tolerance 
of 0.001, and the MSE stop metric. 

The adaptive learning rate algorithm 
(ADADELTA) (Equation 12) (Zeiler, 2012) 
was used:

(Equation 12)

 2 2 2
1

1

2 2 2
1

1

1.  :  [ ] [ ] (1 )

2.  :  Δ [Δ ] / [ ]

 :  [Δ ] [Δ ] (1

:

3.

 

) (Δ )

4.  Δ

 

 

t t t

t t t t

t t t

t t t

Accumulate gradient E g E g g

Compute update x RMS x RMS g g

Accumulate updates E x E x x

Apply update x x x

ρ ρ

ρ ρ

−

−

−

+

= ∗ + − ∗

= − ∗

= ∗ + − ∗

= +

where tg is the gradient at time step t; 
2

t
E g   is the running average of the squared 
gradient at time step t; tx∆  is the update at 
time step t; [ ] 2

1 1t t
RMS x E x

− −
 ∆ = ∆ +∈  is the 

running average of the squared updates at 
time step t;  [ ] 2

t t
RMS g E g = +∈  is the 

root mean square of updates at time step 

t; [ ] 2
t t

RMS g E g = +∈   is the root mean 
square of gradients at time step t;ρ (Rho) 
is the decay rate; ∈  (Epsilon) is a small 
constant for numerical stability.

This algori thm works with two 
parameters (Rho and Epsilon), which were 
configured with 0.9, 0.95, and 0.999 for Rho 
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and 1e-06, 1e-08, and 1e-10 for Epsilon while tg
denoting the parameters at the t-th iteration,

tg as the computed gradient, t is the time, 
and RMS is the root mean squared error.

Model Performance

The databases were split into training 
(70%) and validation (30%). The following 
statistics were used in the validation data: 
the linear correlation coefficient between 
observed and corresponding projected 
yields ( ˆyyr ) (Equation 13), mean absolute 
deviations (MAD) (Equation 14), percent 
root mean square error (RMSE%) (Equation 
15), Bias (Equation 16), percent Bias% 
(Equation 17) and percent relative error 
(RE%) (Equation 18). In addition, the 
distribution graph of RE% vs. fitting was 
interpreted. The estimators used were: 

1

1
ˆ

1 2 1 2

1 1

( )( )

( ) ( )

n

pi m i
i

yy n n

pi m i
i i

n Y Y Y Y
r

n Y Y n Y Y

−

=

− −

= =

− −
=

− −

∑

∑ ∑





; 1

1

n

m pi
i

Y n Y−

=

= ∑

(Equation 13)

( )1 ˆ
1

n
n YY ii

i
MAD − ∑

=
= − ;        (Equation 14)



1 1 2

1
% 100 ( Y )

n

i i I
i

RMSE Y n Y
− −

=

= −∑ ;
                                              (Equation 15)

( )
1

ˆ
 ;

n i i

i

Y Y
Bias

n=

−
= ∑ ;          (Equation 16)

( )1

1

ˆ
% 100

n i i
i

i

Y Y
Bias Y

n
−

=

−
= ∑ ;    (Equation 17)



% 100 i i

i

Y Y
RE

Y
 −

=   
 

             (Equation 18)

where n = number of observations; Y
= projected yield; Y  = observed yield; and 
Y = mean observed yield.

RESULTS
Assessment of Growth and Yield 
Projection 

Assessment of Production Capacity. The 
parameter estimates of the Gompertz model 
are shown in Table 2, where all coefficients 
were significant (p < 0.01). The same table 
shows the precision and accuracy statistics 
obtained from the fit when applied to the 
validation data with r = 0.9112, MAD = 
1.7104, RMSE% = 11.8216, bias = 0.1200, 
and bias% = 0.0066.

Table 2
Statistical indicators and evaluation parameters obtained using the Gompertz model in hybrid eucalypt stands

Gompertz model

Parameter Coefficient Standard 
error t-statistic r MAD RMSE 

(%) Bias Bias 
(%)

β1 29.3806 0.3676 79.94

0.9112 1.7104 11.8216 0.12 0.0066β2 0.9578 0.0387 24.73

β3 0.0511 0.002 25.85

Note. r = Correlation between observed and estimated dominant height (Hd); MAD = Mean absolute 
deviation; RMSE% = Percent mean square error; Bias% = Percent bias



Gianmarco Goycochea Casas, Carlos Pedro Boechat Soares, Márcio Leles Romarco de Oliveira, Daniel Henrique Breda Binoti, Leonardo 
Pereira Fardin, Mathaus Messias Coimbra Limeira, Zool Hilmi Ismail, Antonilmar Araújo Lopes da Silva and Hélio Garcia Leite

1136 Pertanika J. Trop. Agri. Sci. 46 (4): 1127 - 1150 (2023)

The limit tables of dominant heights were 
established from the obtained coefficients 
and applied to the site index equation 
(Equation 5), being able to construct the site 

index curves at an index age of 72 months 
to stand for the productive capacity (Figure 
2) illustratively. The site index has been set 
from 22 to 32 m with an amplitude of 2 m.
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(m
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Evaluation of Variable Density Models. 
The parameter estimates of the Clutter and 
Buckman model modified by A. L. da Silva 
et al. (2006) for Data Structures I and III 
are shown in Table 3, where all coefficients 
were significant (p < 0.01). The results of 
the statistical parameters evaluated for both 
models and the data structures evaluated are 
also shown. 

The comparison of fits between Data 
Structures I and III reveals that, in the case 
of the Clutter model (1963), Data Structure 
I provides superior statistical estimates, 
with r = 0.9262, MAD = 23.6587, RMSE% 
= 14.6257, bias = -4.3151, and bias% = 
-0.0187.

In the case of the Buckman model 
modified by A. L. da Silva et al. (2006), 
a large difference is observed in their 
statistical estimations of the future yield.  
The Structure III database was clearly better 
than the structure I database with r = 0.8658, 
MAD = 33.3512, RMSE% = 20.4896, bias 
= -164,653, and bias% = -0.0712. 

The Clutter model fitted using Data 
Structure I (Figure 4A) showed a better 
constant variance than Data Structure III 
(Figure 4B). An improvement in its residual 
distribution was also observed when fitting 
the Buckman model modified by A. L. da 
Silva et al. (2006) using Data Structure III 
(Figure 4D) rather than using Data Structure 
I (Figure 4C).

Figure 2. Site index (S) curves at the index age of 72 months in hybrid eucalypt stands
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Table 3
Parameter estimates and their respective precision and accuracy statistics of Clutter and Buckman's models 
fitted with Database Structures I and III in hybrid eucalypt stands

Clutter model (1963)
Data Structure I

 Coefficient Std. 
error t-statistic Variable r MAD RMSE 

(%) Bias Bias (%)

α0 3.932558 0.038727 101.5454

B2 0.9236 1.3949 9.2528 -0.1118 -0.0053α1 -0.008756 0.001392 -6288644

b0 0.877906 0.044012 19.94678

b1 -10.24837 0.481462 -21.28594

V2 0.9262 23.6587 14.6257 -4.3151 -0.0187b2 0.018141 0.000727 24.94387

b3 1.38008 0.014437 95.59182

Clutter model (1963)

Data Structure III

 Coefficient Std. error t-statistic Variable r MAD RMSE (%) Bias Bias 
(%)

α0 3.981974 0.033332 119.4652

B2 0.9219 1.4789 9.9031 -0.6373 -0.0302α1 -0.0128 0.001217 -1051407

b0 1.603696 0.007266 220.7228

b1 -22.6567 0.100077 -226.3926

V2 0.9143 26.0424 16.1049 -9.8251 -0.0425b2 0.035006 0.000139 251.6177

b3 1.06014 0.002439 434.6499

Buckman model modified by A. L. da Silva et al. (2006) 

Data Structure I

 Coefficient Std. error t-statistic Variable r MAD RMSE 
(%) Bias Bias 

(%)

α0 2.735686 0.200096 13.672

B2 0.4655 4.0692 27.3475 -0.1448 -0.0069

α1 0.009577 0.001975 4.85

α2 0.050674 0.003933 12.883

α3 -3.344789 4.096659 -0.816

α4 -1.194655 0.040544 -29.466

b0 1.008 0.04 24.82

V2 0.5766 60.0655 38.0952 -4.495 -0.0194
b1 0.0193 0 27.19

b2 -11.42 0.46 -25.04

b3 1.333 0.01 102
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Evaluation of Deep Learning Models. In 
the beginning, 167 deep learning models 
were trained with different hyperparameter 
configurations for each II-A and II-B data 
structure. However, in Data Structure II-A, 
only 159 models found an optimal solution, 
and in Data Structure II-B, only 157 models 
found an optimal solution. The best-trained 
model for Structure II-A presented the 
following hyperparameter configuration: 
activation = Maxout, epsilon = 1.00e-10, 
hidden layer = [200,100,50], rho = 0.9, 
and epoch = 66.23. The best-trained model 
for structure II-B presented the following 
hyperparameter configuration: activation 
= Rectifier, epsilon = 1.00e-08, hidden layer 
= [100,50], rho = 0.999, and epoch = 4.59. 
Initially, 1,000 epochs were configured, but 
these were not necessary to complete since 
the early stopping configuration allows the 
training to stop early during the creation 
and scoring of the model, thus avoiding 
overfitting. The Status of neuron layers of 
the best models can be seen in Table S1. It 

has also evaluated the learning curves of 
each best model of the II-A (Figure 3A) 
and II-B (Figure 3B) Data Structures, both 
for the training data set and the validation 
data set in which it has used the RMSE 
over the number of epochs. Both results 
were adequately representative; however, 
using a monthly Data Structure (II-B Data 
Structure), a greater number of epochs were 
not needed compared to the II-A Structure. 

Statistical indicators of both Data 
Structures were analyzed (Table 4). The 
results showed that using the II-B Data 
Structure, there was a statistical gain in 
its parameters with R = 0.9758, MAD = 
14.0096, RMSE% = 8.5838, bias = -4.5534, 
and bias% = -0.0197.

Illustratively, regular distribution of 
the residuals is observed when trained with 
an II-B Data Structure (Figure 4F), i.e., the 
residuals were randomly distributed around 
the zero value and, in fact, with a statistical 
gain compared to the II-A Structure (Figure 
4E).

Table 3 (Continue)
Buckman model modified by A. L. da Silva et al. (2006)

Data Structure III

Coefficient Std. error t-statistic Variable r MAD RMSE 
(%) Bias Bias 

(%)
-2.7700256 0.0610517 -45.37

B2 0.823 2.3147 14.9104 -1.1643 -0.0552
-0.0173024 0.0004176 -41.43
-0.0239686 0.000876 -27.36
42.9365767 1.077054 39.87

0.721791 0.0150107 48.09
1.598209 0.007283 219.4

V2 0.8658 33.3512 20.4896 -16.4653 -0.0712
0.034926 0.000139 251.3

-22.581012 0.100189 -225.4
1.062248 0.002439 435.6

Note. r = Correlation between observed and projected future yield (V2); MAD = Mean absolute deviation; 
RMSE% = Percent mean square error; Bias% = Percent bias
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Figure 3. Model learning performance over the number of epochs trained in hybrid eucalypt stands
Note. A = Learning performance using Data Structure II-A; B = Learning performance using Data Structure 
II-B; RMSE = Root mean square error

Table 4
Precision and accuracy statistics of deep learning model fitted with database structures II-A and II-B in hybrid 
eucalypt stands

Model Data 
Structure Variable r MAD RMSE 

(%) Bias Bias (%)

Deep 
learning

II-A V2 0.9506 19.4537 11.8697 -1.3161 -0.0057

II-B V2 0.9758 14.0096 8.5838 -4.5534 -0.0197

Note. r = Correlation between observed and projected future yield (V2); MAD = Mean absolute deviation; 
RMSE% = Percent mean square error; Bias% = Percent bias

Figure 4. Dispersions of percent relative errors (RE%) as a function of estimated performance for the data 
structures and models in hybrid eucalypt stands
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Evaluation of Growth and Yield 
Projections from Early Age to Harvest 
Age
A statistical comparison was made with 
the methods and data structure evaluated 
to evaluate the accuracy of the volumetric 
projections from the early ages (two years) 
to the harvest age (six and seven years) 
(Table 5). The RMSE% plot was performed 
for each projection at the harvest age of 6 
years (Figure 5A) and 7 years (Figure 5B) 
throughout the early ages to understand 
the behavior of the projections. The deep 
learning with Data Structure II-B presented 
greater precision in its statistics, which 
resulted in a lower variation of values   
between ages compared to the other methods 

and data structure. The accuracy generally 
increases as the early age increases except 
with the Buckman model with Structure III 
when the projection is for six years, but it 
has a resounding effect when the projection 
is for two years for both projection ages.

The methods used with a monthly data 
structure in this study present good estimates 
for volume projections from an early age, 
but when using artificial intelligence as a 
method of deep artificial neural networks, 
there is a tendency to decrease the RMSE%, 
an important indicator in volume projections, 
which can be considered in decision-making 
and influence the management plan. In 
the case of the Clutter model, despite not 

Figure 4. (Continue)
Note. A = Fitting the Clutter model using Data Structure I; B = Fitting the Clutter model using Data 
Structure III; C = Fitting the modified Buckman model using Data Structure I; D = Fitting the modified 
Buckman model using Data Structure III; E = Fitting the deep learning model using the Data Structure II-A; 
F = Fitting the deep learning model using the Data Structure II-B
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having statistical gain with a Structure III, it 
presents good statistical estimates; however, 

it is always recommended to fit the model 
as is typically done, employing Structure I.

Table 5
Statistical results of volumetric projections from early to harvest age by Clutter, Buckman, and deep learning 
models using a study data structure in hybrid eucalypt stands 

Model Data 
Structure

Early 
age

Harvest 
age r MAD RMSE 

(%) Bias Bias 
(%)

Clutter

I

2

6

0.6045 33.0581 15.4798 -13.0763 -0.0487

3 0.7425 25.9512 12.8617 5.2079 0.0201

4 0.8488 21.0546 10.1621 0.4931 0.0018

5 0.9332 11.7644 5.6019 -0.5465 -0.002

2

7

0.4788 32.3557 18.2733 -3.6332 -0.012

3 0.7516 49.6076 18.9629 -20.3878 -0.0617

4 0.9058 41.4839 14.9614 -30.8371 -0.0879

5 0.9105 7.8335 5.3841 -4.6331 -0.0138

III

2

6

0.5292 40.6503 18.8847 -25.016 -0.0931

3 0.6717 29.6257 14.33 -0.9692 -0.0037

4 0.8396 22.4827 10.4329 -3.1825 -0.0118

5 0.9373 11.5962 5.6741 -5.1036 -0.019

2

7

0.4031 37.1509 19.9158 -9.5745 -0.0318

3 0.6969 53.9502 20.3385 -26.7242 -0.0809

4 0.8759 47.0845 17.0584 -37.7946 -0.1077

5 0.927 8.8185 5.827 -7.1168 -0.0211

Buckman 
modified 
by A. L. 
da Silva 

et al. 
(2006)

I

2

6

0.0045 93.5816 39.5078 -86.1337 -0.3205
3 0.2467 53.8019 25.3614 -14.2639 -0.055
4 0.2547 56.9629 25.9555 17.8658 0.0659
5 0.2706 48.8036 24.7695 26.8213 0.1001
2

7

-0.1793 61.3515 32.1259 -44.8372 -0.1487
3 0.025 102.6234 37.2318 -70.2897 -0.2128
4 0.3843 64.9168 23.739 -20.1564 -0.0574
5 0.786 11.6204 8.5094 9.1789 0.0272

III

2

6

0.6481 36.9178 16.8792 -23.2161 -0.0864

3 0.6345 33.2872 16.3512 -13.6835 -0.0528

4 0.5674 38.6764 17.7144 -17.3354 -0.0639

5 0.5943 33.5235 15.9619 -22.4244 -0.0837

2

7

0.5108 34.3482 18.7104 -9.8646 -0.0327

3 0.6816 59.2349 21.8192 -37.5963 -0.1138

4 0.7783 60.4282 20.4033 -48.3494 -0.1378

5 0.7383 13.5624 8.3983 -5.7556 -0.0171
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Table 5 (Continue)

Model Data 
Structure

Early 
age

Harvest 
age r MAD RMSE 

(%) Bias Bias (%)

Deep 
learning

II-A

2

6

0.7348 26.7587 12.7355 -9.2113 -0.0343

3 0.7818 23.9604 11.964 1.7124 0.0066

4 0.8934 17.9795 8.5486 1.4199 0.0052

5 0.9413 10.3057 5.2914 0.7683 0.0029

2

7

0.7403 24.1687 14.1892 -0.1785 -0.0006

3 0.8565 32.7332 13.6318 0.9818 0.003

4 0.939 23.7861 8.5571 -7.8113 -0.0223

5 0.9537 5.127 3.3905 -0.1354 -0.0004

II-B

2

6

0.8992 20.6304 10.0871 -15.4392 -0.0574

3 0.9353 15.0248 7.3165 -7.045 -0.0272

4 0.9634 12.2011 5.3415 -3.6078 -0.0133

5 0.9395 12.9134 5.9563 -6.9718 -0.026

2

7

0.9066 16.847 9.3742 -7.648 -0.0254

3 0.9284 21.8407 10.01 -10.6502 -0.0322

4 0.9711 14.9505 5.7711 -5.8769 -0.0167

5 0.9777 4.0758 2.8731 -3.0824 -0.0091

Note. r = Correlation between observed and projected future yield (V2) from early to harvest age; MAD = 
Mean absolute deviation; RMSE% = Percent mean square error; Bias% = Percent bias

Figure 5. Percent root mean square error (RMSE%) of volumetric projections from early to harvest age by 
Clutter, Buckman, and deep learning models using a study data structure in hybrid eucalypt stands
Note. A = Harvest age at 6 years; B = Harvest age at 7 years
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DISCUSSION

This study analyzed the effect of a monthly 
data structure on the accuracy and projection 
of the Clutter, Buckman modified by A. L. 
da Silva et al. (2006), and deep learning 
models.

In the case of WSM, the site index 
was acquired by utilizing the guide curve 
method and fitting the Gompertz model. 
This model is very well suited to represent 
the dominant height growth in eucalypt 
stands (Reis et al., 2022) since it follows 
a pattern of biological realism indicating 
an inflection point at its maximum growth 
rate, and from there, it indicates its decrease 
and stagnation of growth (W. S. Silva et 
al., 2021), a usual asymptotic characteristic 
in the growth of trees. Although the guide 
curve method has indeed been criticized for 
a long time (Socha & Tymińska-Czabańska, 
2019), it is the method most used by the 
forest industries in Brazil, due to its ease of 
application and without prejudice to growth 
and yield projections. However, if the 
purpose is purely to classify the productive 
capacity, it may present errors, and it is up 
to the modeler in charge of the study area 
to be careful.

These two variable density models 
usually have a database structure with fixed 
age intervals between two consecutive 
measurements. Likely, the Clutter model 
was always fitted using a data structure in 
which the information was organized by 
pairing the ages as i as i+1. For example, if 
measurements were taken at 2, 3, 4, and 5 
years then, to fit the Clutter model, the data 
were paired in 2–3, 3–4, and 4–5, that is, 

four records or lines from a permanent plot 
are transformed into three records.

The idea of changing the database 
structure with growth intervals to fit growth 
and production models arose from the 
principle of implementing non-parametric 
methods (Mongus et al., 2018; Vieira 
et al., 2018). Furthermore, statistical 
assumptions are likely to be violated due 
to the longitudinal characteristics of the 
data. Nevertheless, it is essential to consider 
that the growth intervals can be utilized for 
obtaining the parameters (Dorado, 2004), 
and the data can also be organized for the 
evaluations of volumetric projections.

The Clutter model is widely used in the 
forestry field and is the most widespread 
model in Brazil (Campos & Leite, 2017), 
with many studies conducted and preferred 
by researchers that over the years, it has 
served as a reference to express other growth 
and production (Soares et al., 2004), which 
gives it a fundamental relevance in forestry 
measurement works.

Authors highlighted using the modified 
Buckman model for volumetric estimates (A. 
L. da Silva et al., 2006; Guera et al., 2019), 
but the model is not used commercially in 
Brazil. This study presented results of its 
volumetric estimates that were highly biased 
when fitted with the usual data structure 
(Data Structure I); however, the model had 
an increase in accuracy when fitted with 
Data Structure III. The model may not have 
been used in Brazil due to inconsistencies in 
the projections because of how the database 
is organized. The repeated solutions method 
was used to obtain the basal area, which 
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consists of repeated solutions based on the 
basal area and involves solving the growth 
equation for a given site index, age, and 
population density. The growth is then added 
to the early density, one month is added to 
the age, and the equation is solved again 
(A. L. da Silva et al., 2006). The database 
structure may rely on an equation for future 
studies to obtain the monthly data. 

The data to fit the Buckman model can, 
in principle, be arranged in constant one-
year (or monthly) intervals for all plots. 
However, the organization in one-year 
intervals limits the application of the model 
in strategic planning because it is often 
necessary to make production projections 
for each management unit for a single 
reference month, for example, December of 
each year. In this case, monthly projections 
are needed since the early measurements of 
the plot are not the same.

The use of artificial neural networks 
has solved several problems in forest 
management and, in most cases, with 
higher accuracy than regression models. In 
general, many studies have demonstrated the 
effectiveness of the use of artificial neural 
networks (da Rocha et al., 2021; da Silva 
Binoti et al., 2013; de Alcântra et al., 2018; 
de Freitas et al., 2020; dos Reis Martins et 
al., 2016), even when comparing artificial 
neural networks with regression methods, 
ANNs show superiority in their statistical 
results (Casas, Fardin, et al., 2022; da Silva 
Binoti et al., 2014; da Silva Tavares Júnior 
et al., 2019; Lopes et al., 2020; M. L. M. da 
Silva et al., 2009; Vendruscolo et al., 2017).

A large amount of data was used in 
this study, which led to the use of the 

deep learning method. Deep learning has 
a hierarchical structure, which makes it 
particularly suitable for learning knowledge 
hierarchies (Nielsen, 2015). This evidence 
can be seen when analyzing their residual 
distribution graphs, in which deep learning 
develops with robust and constant variance, 
and even more so when Data Structure II-B 
is used (Figure 4F).

The volumetric projections were 
statistically analyzed for projection ages of 
6 and 7 years, and it was seen that the deep 
learning method presents superiority in its 
statistical evaluation, especially when using 
a monthly distributed data structure (Data 
Structure II-B). Using the deep learning 
method with an II-B Data Structure, the 
percent mean square error (RMSE%) 
decreased more than the other methods and 
data structure (Figure 5B). However, it still 
does not achieve statistical performance 
(when the early age is 2 or 3 years) equal to 
that achieved when the early age is close to 
the projection age, i.e., from the early age 
of five years to a projection age of six or 
seven years.

Models to predict future yield improve 
the understanding of tree growth in forest 
plantations (Lhotka, 2017). Project for 
close ages is recommended, as yield can be 
overestimated when projected for lengthy 
intervals (Weiskittel et al., 2016). This 
study’s findings confirm a consistent pattern 
observed in growth modeling studies: lower 
accuracy in projections when conducted 
from an early age (around two years), 
irrespective of the chosen model.
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This study confirms what has been 
seen in growth modeling studies, i.e., lower 
accuracy when the projection is made from 
an early age (approximately two years), 
regardless of the model used. 

It is highly likely that this could vary if a 
larger number of categorical variables, such 
as soil type, were used (Casas, Fardin, et 
al., 2022); however, not all forest industries 
have access to such information. This study 
has made an effort to utilize simple models 
and readily available variables accessible 
to the forestry scientific community and the 
forest industry.

CONCLUSION

A better alternative to increase the statistical 
assumptions of the forecast from early to 
harvest age is based on a monthly distributed 
data structure using the deep learning 
method. It is set up so that the Clutter 
model should be fitted in the usual way it 
has been fitted, i.e., with the Data Structure 
I. Fitting the Buckman model requires 
uniform intervals between measurements. 
In the case of eucalypt stands, it must 
be a monthly interval to be effectively 
applied in strategic planning. The Buckman 
model was most accurate when data were 
organized month-by-month and without 
overlap, corresponding to Data Structure 
III evaluated in this study. Investing more 
in research is necessary to obtain greater 
assertiveness and precision in projections 
from an early age with variables that are 
easy to get.
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